Comparison of functional outcomes of radial forearm and anterolateral thigh free flaps after hemiglossectomy in patients with tongue cancer: a systematic review and meta-analysis

Comparación de resultados funcionales posteriores a reconstrucción utilizando colgajos libres radial antebraquial y anterolateral de muslo en pacientes con cáncer de lengua sometidos a hemiglosectomía: revisión sistemática y meta-análisis

Luis Sepúlveda A.^{1,2}, Gonzalo Peralta J.³, Vanessa Ampuero E.^{1,2}, Francisca Fernández A.²

Abstract

Introduction: One of the surgical challenges of tongue cancer its functional reconstruction. The radial forearm free flap (RFFF) is usually used in minor resections such as partial glossectomies, and the anterolateral thigh free flap (ALTFF) in subtotal and total glossectomies. In hemiglossectomy, there is controversy because there is no rigorous review that considers functional results. Objectives: To compare functional outcomes among patients receiving RFFF or ALTFF for tongue reconstruction after hemiglossectomies. Material and Methods: A comprehensive search was conducted in PubMed, EMBASE, and CENTRAL databases from inception until August 2023. This rigorous approach ensured that all relevant studies were included. Primary outcomes included speech and swallowing after hemiglossectomies reconstruction with RFFF or ALTFF, providing a comprehensive overview of the functional outcomes. Results: Our analysis included six studies meeting the criteria and involved 148 RFFF and 94 ALTFF patients. The key finding was the significantly better speech results in the RFFF group (SMD: 0.30; 95% CI [0.03, 0.56], p-value = 0.0301). However, there were no significant differences in swallowing outcomes, which warrants further investigation. Conclusion: Our findings indicate that the RFFF is associated with better speech results than the ALTFF for hemiglossectomies reconstruction. However, it's important to note that the RFFF also carries a higher risk of donor site complications. Therefore, when choosing the flap for reconstruction, the preferences of the surgeon and the patient should be considered, and the potential complications should be carefully considered.

Keywords: Glossectomy, Tongue Cancer, Speech Intelligibility, Swallowing Disorders, Microsurgical Free Flaps.

Resumen

Introducción: Uno de los retos quirúrgicos del cáncer de lengua es su reconstrucción funcional. El colgajo libre radial antebraquial (RFFF, por sus siglas en inglés) se suele utilizar en resecciones menores, como las glosectomías parciales, y el colgajo anterolateral del muslo (ALTFF, por sus siglas en inglés) en las glosectomías subtotales y totales. En la hemiglosectomía, existe controversia porque no existe una revisión rigurosa que considere los resultados funcionales Objetivos: Comparar los resultados funcionales entre los pacientes que recibieron RFFF o ALTFF para la reconstrucción de la lengua posterior a una hemiglosectomía. Materiales y Métodos: Se realizó una búsqueda exhaustiva en las bases de datos PubMed, EMBASE y CENTRAL desde su inicio hasta agosto de 2023. Los resultados primarios incluyeron el habla y la deglución después de la reconstrucción posterior a una hemiglosectomía

¹Departamento de Otorrinolaringología, Universidad de Valparaíso, Valparaíso, Chile. ²Servicio de Otorrinolaringología, Hospital Carlos Van Burén, Valparaíso, Chile. ³Servicio de Salud Arica, Subdirección de Gestión Asistencial, Arica, Chile.

The authors declare no conflicts of interest.

Received 05 June 2024. Accepted 02 March 2025.

Corresponding author: Luis Sepúlveda A. Calle del Sol 85, depto. 94, Concón, Valparaíso, Chile. Email: luis.sepulvedaag@ postgrado.uv.cl utilizando RFFF o ALTFF, lo que proporcionó una visión general completa de los resultados funcionales. Resultados: Nuestro análisis, que incluyó 6 estudios que cumplieron con los criterios, involucró a 148 pacientes con RFFF y 94 pacientes con ALTFF. El hallazgo clave fueron los resultados del habla significativamente mejores en el grupo RFFF (DME: 0,30; IC del 95% [0,03, 0,56], valor p=0,0301). Sin embargo, no hubo diferencias significativas en los resultados de la deglución, un resultado que justifica una mayor investigación. Conclusión: Nuestros hallazgos indican que el RFFF se asocia con mejores resultados del habla que el ALTF para la reconstrucción con hemiglosectomía. Sin embargo, es importante tener en cuenta que el RFFF también conlleva un mayor riesgo de complicaciones en el sitio donante. Por lo tanto, a la hora de elegir el colgajo para la reconstrucción, se deben tener en cuenta las preferencias del cirujano y del paciente, y se deben considerar cuidadosamente las posibles complicaciones.

Palabras clave: Glosectomía, Cáncer de lengua, Inteligibilidad del Habla, Trastornos de Deglución, Colgajos Quirúrgicos.

Introduction

The oral cavity is one of the most common cancers in the Head and Neck region. In 2020, it was estimated that there were 377,713 new cases of oral cavity cancer worldwide, with the tongue being the most common site1. The standard treatment in this type of tumor is surgical resection of the primary lesion (glossectomy), cervical lymph node dissection and radiotherapy, chemotherapy, or both as adjuvant therapy, depending on the histological report. In general, a partial glossectomy involves the resection of less than one-third of the tongue, hemiglossectomy consists of the resection of one-third to half of the tongue, subtotal glossectomy requires resection of half to three-fourths of the tongue, and total glossectomy involves resection of the entire tongue.

After tumor resection, primary reconstruction of the defect is essential to minimize morbidity. Restoring its form and function will be necessary since the tongue plays a vital role in speech and swallowing. Patients with early disease (T1, T2, and N0) generally have good outcomes, and the 5-year survival rates range from 75% to 89%²⁻⁴. The treatment includes wide excision with primary closure or wide excision with reconstruction. Oncological margins of 1.5 to 2 cm are recommended for squamous cell carcinomas; even small cancers can lead to relatively large surgical defects. Using a free flap for reconstruction achieved a large free margin, relatively lower recurrence, and good survival rates5. On the other hand, it presents better results regarding intelligibility, swallowing, and life quality⁶⁻⁹.

Free flap reconstruction of an intraoral defect was first introduced in 1983 with the radial forearm free flap (RFFF)¹⁰, subsequently expanding to various free flaps and surgical techniques to optimize postoperative function. But until today, the radial forearm flap is still the most popular one¹¹⁻¹⁶. The radial free flap offers a surface area between 9x12 cm or greater if necessary¹⁷. The main advantages of this flap are: the vessels have a diameter similar to that of the cervical vessels, making an anastomosis easier to perform; it has a long pedicle; constant anatomy; it can be elevated simultaneously while performing oral ablation; has a potential for reinnervation through coaptation of the lateral antebrachial nerve with the lingual or inferior alveolar nerve; the flap is thin and foldable, allowing better manipulation when shaping the tongue, even raising it with additional adipose tissue to give greater volume; and the volume provided will be sufficient, avoiding difficulties during breathing or speech in the initial postoperative period $^{18-22}$.

On the other hand, the most significant disadvantage described in this type of flap is related to the high morbidity of the donor site. Forearm deformities resulting from loss of soft tissue, delayed healing, need for skin grafts to close the donor site, visible scars, changes in sensitivity, edema in the hand, and altered wrist mobility are the most frequently reported complications. In this sense, the literature reports 19-53% of partial skin graft loss at the donor site, 13-33% of flexor tendon exposure, and 16-100% of patients complaining of reduced grip strength²³. Some of these problems, and particularly the need

for a skin graft to close the primary site, have been solved by introducing new methods, such as the use of tissue expanders or new designs to elevate the flap, such as suprafascial dissection and V-Y fasciocutaneous advancement based on the ulnar artery. However, this is possible in defects smaller than 6 x 4 cm, which is insufficient in many large tumors²⁴. For this reason, alternative methods began to appear in the search for less donor site morbidity and, thus, the appearance of the anterolateral thigh flap.

The anterolateral thigh free flap (ALTFF), originally described by Song in 198425, is currently considered an alternative to the radial flap in head and neck reconstruction²⁶. It provides a thin, pliable skin to replace the defect in the tongue after resection, where it not only acts as a bulge but allows the remaining tongue to have some degree of mobility. However, its anatomy is less consistent, sometimes leading to a more difficult harvest. Furthermore, its pedicle is typically shorter than RFFF ones⁶. Designing the skin flap more distally (closer to the knee) can increase the harvested pedicle length. This flap provides a large territory of skin and shows great versatility. Where it can be elevated as a flap as thin as the radial one, or in a case requiring bulkier tissue or multiple components are necessary, it is raised as a musculocutaneous flap combined with the vastus lateralis or tensor fascia lata muscle. With minimal compromise at the donor site²⁷, marginal necrosis of the inset ALTFF is the most common flap-specific complication, but total flap failure is rare.

Some authors have suggested that the bulkiness of an ALTFF leads to less mobility of the neotongue²⁸, obtaining better functional results with the RFFF²⁹. In a direct comparison of tongue defects reconstructed with RFFF versus ALTFF, however, de Vicente et al. found no significant differences in postoperative speech intelligibility, tongue mobility, or deglutition. They concluded that because the ALTFF has less donor morbidity, it is a superior choice to the RFFF for tongue reconstruction²³. Of note, a confounding factor in this study is that AL-TFF is typically a much larger flap than RFFF. ALTFF is generally only used for larger glossectomy defects (usually larger than half of the tongue). Therefore, the RFFF is traditionally

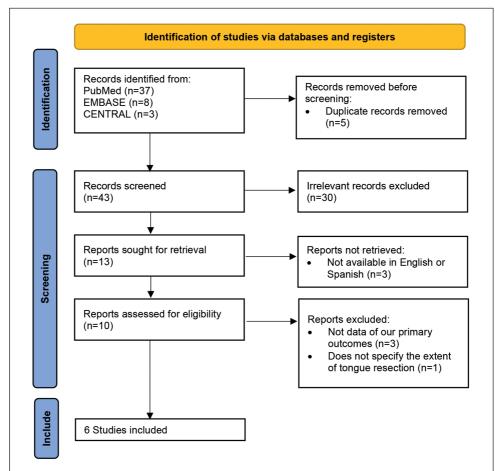
used in minor resections such as partial glossectomies, as a thinner and more flexible flap, and the ALTFF in cases of advanced tumors requiring subtotal and total glossectomies. However, in the case of hemiglossectomies, there is some controversy about it³⁰.

A rigorous review considering functional results has not been performed to determine the selection between these reconstructive options, specifically in the case of hemiglossectomies. Thus, we conducted a systematic review and meta-analysis to evaluate the current literature on speech and swallowing after hemiglossectomies and reconstruction with RFFF or ALTFF.

Material and Methods

This systematic review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines³¹⁻³². We searched PubMed, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL) from inception until August 30th, 2023, using a combination of the following keywords: (hemiglossectomy[Title/ Abstract] OR glossectomy[Title/Abstract] OR tongue resection[Title/Abstract]) AND (radial forearm[Title/Abstract] OR radial artery[Title/ Abstract]) AND (anterolateral thigh[Title/ Abstract] OR femoral artery[Title/Abstract]). We used Rayyan for the screening process³³. After removing duplicates, two independent reviewers perform a title and abstract screening. We selected potentially relevant studies that were retrieved and assessed in the full text against the eligibility criteria by two independent reviewers. We also screened reference lists of the papers chosen for other potentially valuable articles we may have missed in the initial search.

We used the following criteria to select papers for meta-analysis: This review considers studies that include patients with tongue cancer over 18 years old and undergoing anterolateral thigh or radial forearm free flap reconstruction after hemiglossectomies. If the study does not mention the type of surgery that was performed, those patients T2 and T3 according to the staging AJCC 8th edition³⁴ will be included. The study's primary outcome includes speech


and swallowing. Donor site morbidity, flap failure, other postoperative complications, and operation time are significant but not critical outcomes for this study. This review considers experimental and quasi-experimental study designs, including randomized control studies, non-randomized controlled trials, before and after studies, and interrupted time-series studies. Because of the lack of experimental and quasi-experimental studies, prospective and retrospective cohort studies and case-control studies were included. Studies were excluded if they were not published in English or Spanish, were unavailable in full text, or did not report our primary outcomes (Figure 1).

After completing the search, 6 studies^{23,29,30,35-37} met the defined criteria, and we extracted their data. Information was collected

by two reviewers independently. For conflicting evaluations, an agreement was reached after a discussion.

Data collection

We collected the following data: year of publication, first author, country of origin, number of cases according to RFFF and ALTF, Follow-up time, percentage of female patients, age, tumor stage, tumor size, concomitant radiotherapy, if ALTFF was made thinner, and primary and secondary outcomes. We extracted data from the included articles' text, tables, and figures. Our primary outcomes were speech and swallowing. Our secondary outcomes were operative time, donor site, flap failure, and other postoperative complications.

Figure 1. Flowchart of the literature search

Data analysis

We calculated standardized mean differences (SMD) and 95% confidence intervals (95% CI) to compare speech and swallowing outcomes. We used Cochran's Q and I2 statistics to assess heterogeneity. We considered heterogeneity low if I2 < 25%, moderate if 25% \geq I2 < 75%, and high if I2 \geq 75%. We combined the data using a fixed-effects or random-effects model if heterogeneity was low or moderate, respectively. We decided not to perform a meta-analysis if heterogeneity was high. We considered statistical significance if p < 0.05. We used R software and the meta library for data processing and analysis.

Risk of publication bias assessment

We assessed the risk of publication bias using funnel plots and Begg's and Egger's tests. We considered statistical significance if p < 0.05.

Results

Studies characteristics

We pooled a sample of 242 subjects, of which 80 were female (33.1%). Reconstruction after hemiglossectomies were performed with RFFF and ALTFF in 148 and 94 subjects, respectively.

Table 1 summarizes the characteristics of the studies included in the meta-analysis.

All of these studies were observational and retrospective in design. We excluded 11 patients from Cai et al. according to our inclusion criteria when the type of surgery was not specified. Speech and swallowing evaluation methods are described in **Table 2**.

Speech

We detected low heterogeneity between studies as of Cochran's Q = 6.26 for 5 degrees of freedom (p-value = 0.2820) and I2 = 20.1%. We found a statistically significant difference in favor of RFFF for speech (SMD: 0.30; 95% CI [0.03, 0.56], p-value = 0.0301). The results of the speech meta-analysis are shown in **Figure 2.**

The funnel plot and Begg's (p-value = 0.3476) and Egger's (p-value = 0.2615) tests are suggestive that there would be no significant publication bias.

Swallowing

We detected high heterogeneity between studies as of Cochran's Q = 31.57 for 5 degrees of freedom (p-value < 0.0001) and I2 = 84.2%. Given these results, we decided not to perform the swallowing meta-analysis.

Discussion

In a meta-analysis published in 2022 by Randanath et al.38 comparing radial and anterolateral flaps in oral cavity defects, they found equivalent results regarding flap survival and oral function between the two flaps but less donor-site morbidity with the ALTFF. It also establishes that it is necessary to incorporate patient-specific factors into the decision. The reconstruction in each anatomical site and tumor stage will differ significantly when we have to decide the type of reconstruction to perform. In the case of lingual reconstruction, we consider that hemiglosectomy becomes an intermediate resection in terms of the percentage of volume resected. It needs to be clarified whether the greater volume provided by ALTFF during reconstruction would achieve better or inferior results than RFFF. In this sense, while some authors suggest that the bulkiness of the ALTFF would give Newspeak less mobility, others, on the other hand, establish that there would be no functional differences. favoring the latter due to its lower morbidity. In this study, it was possible to demonstrate that the radial flap would present better speech results than the ALTFF.

It is essential that previous interpretation of the results we take into account, as can be seen in Table 2, the authors used different methods for the evaluation of speech, from using percentage methods according to the intelligibility of post-reconstructive speech evaluated by speech therapists to the use of pre-established scales such as Teichgraeber et al.39, which, although they are numerical variables, allows quantifying and comparing the results, indicates that there is currently no internationally standardized way to assess speech after reconstruction. On the other hand, concerning the swallowing result, we decided not to perform a meta-analysis of the data because there was a very high heterogeneity within the

	Flap complications	RFFE: Hap's tip necrosis (1) (1) ALTFE: Vascular crisis (1), fat necrosis (1)	۳ ۲	RFF: Flap failure (1) Vascular crisis (3) ALTF: Vascular crisis (1)	RFF: Minor complication (2) ALTFF: Minor complication (1)	Z Z	NR
	Donor site Complications	RFFF: 0 ALTFF: hematoma (1)	N N	RFF: Skin graft loss (3), paresthesia (9) ALTF: 0	RFF: Skin graft loss (2) ALTFF: 0	RFFF: Skin graft loss (4), paresthesia (1) ALTFF: 0	NR
	Length of surgery (RFFF; ALTFF)	7,7 h (7,2 h; 8,3 h)	Z Z	Z Z	Z R	N.	N.
	Flap survival (RFF; ALTFF)	100%	100%	97,8% (97,1%; 100%)	Z Z	Z Z	N N
	Swal- lowing	Q Z	RFFF better than ALTFF	Q Z	ALTFF better than RFFF	ALTFF better than RFFF	Q.
	Speech	2	RFFF better than ALTFF	2	2	N N	QN
	RT (RFFF; ALTFF)	Yes ^c 55-60 Gy	Yes ^d 51 (32; 19) 56-60 Gy	Z Z	Yes ^e 15 (NR) 56-59 Gy	Yes 16 (8; 8) 60 Gy	N N
	Thinned ALT flap	o Z	O Z	Yes (4 mm)	O N	o N	Yes (4 mm)
	Flap size (RFF; ALTFF)	37,03 cm ² (36,95 cm ² , 37,24 cm ²)	42,01 cm ² (40,6 cm ² , 44,7 cm ²)	Z.	Z Z	N N	N
	Tumor size (RFF; ALTFF)	5,97 cm ² (5,62 cm ² , 6,51 cm ²)	Z Z	Z Z	Z Z	Z Z	N R
	Tumor stage (RFF; ALTFF)	T2: 21 T3: 7	T2: 66 T3: 15 T4: 9	Only T2 and T3. (NR)	T2: 4 T3: 16 T4: 6	Z Z	N N
	Age (RFFF; ALTFF)	54,4 ^a (53,8 ^a ; 55,4 ^a)	54,6 ^a (54,3 ^a ; 55,1 ^a)	63,6 ^a (NR)	50,0b (NR)	59,4 ^a (56,5 ^a ; 62,3 ^a)	NR
Table 1. Studies' characteristics	Women (RFF; ALTFF)	14 (11; 3)	35 (28; 7)	16 (NR)	9 (NR)	6 (4; 2)	NR
	Follow- up time	Range: 6-48 months	Mean: 38.5 months Range: 24-76 months	3 months	6, 12 and 24 months	6 months	6 months
	Cases (RFFF; ALTFF)	28 (17; 11)	90 (59; 31)	46 (34; 12)	26 (12; 14)	20 (10; 10)	32 (16; 16)
ies' char	Country of origin	China	China	China	Italy	Spain	Taiwan
1. Stud	First	Cai	Zhang	<u> </u>	2013 Tarsitano	de Vicente	Hsiao
Table	Year	2019	2018	2015	2013	2008	2008

RFFF: Radial forearm free flap. ALTFF: Anterolateral thigh free flap. RT: Radiotherapy. ND: Non-statistically significant differences. NR: Not reported. *Mean. *DMean. *25 patients received radiotherapy; however, it is not possible to tell from the text, tables, and figures whether this count includes those excluded. *Those patients with tumor stage T3-T4, node-positive, or with positive or close surgical margin received radiotherapy without reporting how many. *11 patients received radiotherapy and 4 patients received chemo- and radiotherapy.

Year	First author	Speech	Swallowing
2019	Cai	The reading accuracy of a 200-word essay was assessed. It was scored from 1 (accuracy > 90%) to 4 (unable to speak).	The type of feeding tolerated was evaluated. It was scored from 1 (regular diet) to 4 (nasal tube feeding).
2018	Zhang	The speech subscale of the University of Washington Quality of Life Scale was applied. It was scored from 1 (worst) to 100 (best).	The University of Washington Quality of Life Scale's swallowing subscale, was applied. It was scored from 1 (worst) to 100 (best).
2015	Lu	Two speech therapists evaluated recordings of the subjects' voices and determined their intelligibility in percentage terms.	The intake rate (ml/s) of 175 milliliters of water was evaluated.
2013	Tarsitano	Intelligibility was assessed using a 5-point Likert-type scale (speech can be understood = 1; speech is not understood at all = 5). Three categories were created from these scores (1 or 2: good; 3: acceptable; 4 or 5: poor).	The method of ingestion, time taken to ingest, and consistency of the food consumed were evaluated with a 5-point Likert-type scale for each aspect. Three categories were created from these scores (9 to 15: good; 7 or 8: acceptable; 3 to 6: poor).
2008	de Vicente	Intelligibility was evaluated by a speech therapist using the method described by Teichgraeber <i>et al.</i> The intelligibility was scored from 1 (worst) to 7 (best).	Swallowing was evaluated by a speech therapist using the method described by Teichgraeber et al. Swallowing was scored from 1 (worst) to 7 (best).
2008	Hsiao	A speech therapist and a plastic surgeon evaluated recordings of patients' voices using the methods described by Sultan and Coleman and Teichgraeber <i>et al.</i> The patients were scored from 1 (worst) to 7 (best).	The intake rate (mL/s) of 175 milliliters of water was evaluated according to the method described by Dios et al.

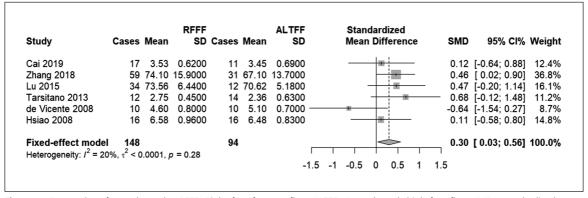


Figure 2. Forest plot of speech results. RFFF: Right free forearm flap. ALTFF: Anterolateral thigh free flap. SMD: Standardized mean difference."

measurement parameters between the studies, and we would be analyzing a data cloud rather than a data set with a trend. This leads us to raise the need to create a standardized scale for evaluating patients undergoing glossectomies in their different extensions to unify the results of further research and obtain statistically significant results.

Analyzing the collected data, we noticed that Zhang et al.29 were the principal authors who found advantages of the RFFF over the ALTFF in speech and swallowing. They were the only ones who used subjective evaluation tools to assess the results of their study with the information given by patients. In contrast, the rest of the authors used objective evaluation tools completed by professionals. It would be useful and will improve the quality of the evidence on this subject to simultaneously use objective and subjective measures of function achieved after reconstructive surgery to adequately assess postoperative outcomes regarding patient well-being and satisfaction and the quality and safety of the surgical technique.

Another factor to consider when choosing the flap to use is the risk of complications associated with the surgical technique, where both the complications of the flap itself and those of the donor site matter. Within the data collected, when focusing on the donor site, it is observed that in those who used RFFF, seven patients presented partial losses of the free skin graft used to cover the donor site, which required postoperative healing to complete the closure of the donor site. Ten patients presented paresthesia in different degrees after surgery, mainly of the fingers, self-limiting in one case and without specifying the evolution of the others. In those who used ALTFF, only one patient had a complication related to a donor site hematoma. Regarding flap complications, in whom an RFFF was performed, two patients presented necrosis of the tip of the flap, and three patients presented a vascular crisis of the flap requiring reoperation for its rescue, not achieving in only one case that was established as flap failure. In those reconstructed using ALTFF, one patient presented flap necrosis, and two presented vascular crises that required reintervention for rescue without presenting failures.

The authors' Lu et al.35 and Hsiao et al.37 were the ones who thinned the ALTFF. Neither study found any statistically significant differences in swallowing or speech. Considering the lower donor site morbidity of ALTFF, with only one case of a hematoma, compared to RFFF, with nine cases of partial skin graft loss and ten cases of paresthesia of the donor site. It can be an excellent alternative for tongue reconstruction after hemiglossectomies. However, more studies should be conducted before establishing it as a flap of choice for this reconstruction. We also realized that only two studies mentioned the size of the used flap and that no study mentioned whether the flap presented any changes after receiving radiotherapy. These variables are important and should be considered in future investigations.

Based on the results obtained, we can conclude that RFFF has better functionality than ALTFF concerning speech but, simultaneously, a higher rate of donor site complications. This underscores the importance of considering the lesion's size and location, the surgical team's experience, and the patient's preferences before choosing the flap to be used. Educating the patient about the functional results of both flaps and the possible complications associated with each technique is also crucial. This personalized approach to treatment decision-making can significantly impact patient outcomes and satisfaction.

Bibliography

- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660
- Lam L, Samman N. Speech and swallowing following tongue cancer surgery and free flap reconstruction--a systematic review. Oral Oncol. 2013 Jun;49(6):507-24. doi: 10.1016/j.oraloncology.2013.03.001
- Shim SJ, Cha J, Koom WS, Kim GE, Lee CG, Choi EC, Keum KC. Clinical outcomes for T1-2N0-1 oral tongue cancer patients underwent surgery with and without postoperative radiotherapy. *Radiat Oncol*. 2010 May 27;5:43. doi: 10.1186/1748-717X-5-43
- Al-Rajhi N, Khafaga Y, El-Husseiny J, Saleem M, Mourad W, Al-Otieschan A, Al-Amro A. Early stage carcinoma of oral tongue: prognostic factors for local

- control and survival. *Oral Oncol.* 2000 Nov;36(6):508-14. doi: 10.1016/s1368-8375(00)00042-7
- Lu CC, Tsou YA, Hua CH, Tsai MH. Free flap reconstruction for early stage tongue squamous cell carcinoma: surgical margin and recurrence. *Acta Otolaryngol.* 2018 Oct;138(10):945-950. doi: 10.1080/00016489.2018.1490030
- Bokhari WA, Wang SJ. Tongue reconstruction: recent advances. Curr Opin Otolaryngol Head Neck Surg. 2007 Aug;15(4):202-7. doi: 10.1097/ MOO.0b013e3281fbd406
- Yu P, Robb GL. Reconstruction for total and neartotal glossectomy defects. Clin Plast Surg. 2005 Jul;32(3):411-9, vii. doi: 10.1016/j.cps.2005.02.005
- Ji, Y. B., Cho, Y. H., Song, C. M., et al. (2017). Long-term functional outcomes after resection of tongue cancer: determining the optimal reconstruction method. *European Archives of Oto-Rhino-Laryngology*, 274(10), 3751-3756.
- Ji YB, Cho YH, Song CM, Kim YH, Kim JT, Ahn HC, Tae K. Long-term functional outcomes after resection of tongue cancer: determining the optimal reconstruction method. *Eur Arch Otorhinolaryngol*. 2017 Oct;274(10):3751-3756. doi: 10.1007/s00405-017-4683-8
- Soutar DS, Scheker LR, Tanner NS, McGregor IA.
 The radial forearm flap: a versatile method for intraoral reconstruction. Br J Plast Surg. 1983 Jan;36(1):1-8. doi: 10.1016/0007-1226(83)90002-4
- Engel H, Huang JJ, Lin CY, Lam W, Kao HK, Gazyakan E, Cheng MH. A strategic approach for tongue reconstruction to achieve predictable and improved functional and aesthetic outcomes. *Plast Reconstr Surg.* 2010 Dec;126(6):1967-1977. doi: 10.1097/PRS.0b013e3181f44742.
- Sakakibara A, Kusumoto J, Sakakibara S, et al. Effect of size difference between hemiglossectomy and reconstruction flap on oral functions: A retrospective cohort study. J Plast Reconstr Aesthet Surg. 2019 Jul;72(7):1135-1141. doi: 10.1016/j.bjps.2019.03.015
- Hartl DM, Dauchy S, Escande C, Bretagne E, Janot F, Kolb F. Quality of life after free-flap tongue reconstruction. *J Laryngol Otol.* 2009 May;123(5):550-4. doi: 10.1017/S0022215108003629
- Nguyen KA, Bui TX, Van Nguyen H, Wein RO. Progressive functional improvement in hemiglossectomy defects reconstructed with radial forearm free flap at 6-months. Am J Otolaryngol. 2018 May-Jun;39(3):317-320. doi: 10.1016/j. amjoto.2018.03.021
- Hsiao HT, Leu YS, Lin CC. Primary closure versus radial forearm flap reconstruction after hemiglossectomy: functional assessment of swallowing and speech. *Ann Plast Surg.* 2002 Dec;49(6):612-6. doi: 10.1097/00000637-200212000-00010
- 16. Bateman BT, Schumacher HC, Wang S,

- Shaefi S, Berman MF. Perioperative acute ischemic stroke in noncardiac and nonvascular surgery: incidence, risk factors, and outcomes. Anesthesiology. 2009 Feb;110(2):231-8. doi: 10.1097/ALN.0b013e318194b5ff
- Patel UA. The submental flap for head and neck reconstruction: Comparison of outcomes to the radial forearm free flap. *Laryngoscope*. 2020 Mar;130 Suppl 2:S1-S10. doi: 10.1002/lary.28429
- Vincent A, Kohlert S, Lee TS, Inman J, Ducic Y. Free-Flap Reconstruction of the Tongue. Semin Plast Surg. 2019 Feb:33(1):38-45. doi: 10.1055/s-0039-1677789
- Baas M, Duraku LS, Corten EM, Mureau MA. A systematic review on the sensory reinnervation of free flaps for tongue reconstruction: Does improved sensibility imply functional benefits? *J Plast Reconstr Aesthet Surg.* 2015 Aug;68(8):1025-35. doi: 10.1016/j. bjps.2015.04.020
- Bokhari WA, Wang SJ. Tongue reconstruction: recent advances. Curr Opin Otolaryngol *Head Neck Surg.* 2007 Aug;15(4):202-7. doi: 10.1097/ MOO.0b013e3281fbd406. PMID: 17620891.
- Orlik JR, Horwich P, Bartlett C, Trites J, Hart R, Taylor SM. Long-term functional donor site morbidity of the free radial forearm flap in head and neck cancer survivors. J Otolaryngol Head Neck Surg. 2014 Jan 13;43(1):1. doi: 10.1186/1916-0216-43-1
- Avery CM. Review of the radial free flap: is it still evolving, or is it facing extinction? Part one: softtissue radial flap. Br J Oral Maxillofac Surg. 2010 Jun;48(4):245-52. doi: 10.1016/j.bjoms.2009.09.004
- de Vicente JC, de Villalaín L, Torre A, Peña I. Microvascular free tissue transfer for tongue reconstruction after hemiglossectomy: a functional assessment of radial forearm versus anterolateral thigh flap. J Oral Maxillofac Surg. 2008 Nov;66(11):2270-5. doi: 10.1016/j.joms.2008.01.018
- Ahn HC, Choi MSS, Hwang WJ, Sung KY. The transverse radial artery forearm flap. *Plast Reconstr Surg.* 2007 Jun;119(7):2153-2160. doi: 10.1097/01. prs.0000260704.34854.20
- Song YG, Chen GZ, Song YL. The free thigh flap: a new free flap concept based on the septocutaneous artery. *Br J Plast Surg*. 1984 Apr;37(2):149-59. doi: 10.1016/0007-1226(84)90002-x
- Wei FC, Jain V, Celik N, Chen HC, Chuang DC, Lin CH. Have we found an ideal soft-tissue flap? An experience with 672 anterolateral thigh flaps. *Plast Reconstr Surg.* 2002 Jun;109(7):2219-26; discussion 2227-30. doi: 10.1097/00006534-200206000-00007
- Kuo YR, Jeng SF, Kuo MH, et al. Free anterolateral thigh flap for extremity reconstruction: clinical experience and functional assessment of donor site. *Plast Reconstr Surg.* 2001 Jun;107(7):1766-71. doi: 10.1097/00006534-200106000-00019
- 28. Chien CY, Su CY, Hwang CF, Chuang HC, Jeng SF, Chen YC. Ablation of advanced tongue or base

- of tongue cancer and reconstruction with free flap: functional outcomes. *Eur J Surg Oncol.* 2006 Apr;32(3):353-7. doi: 10.1016/j.ejso.2005.12.010
- Zhang PP, Meng L, Shen J, Liu H, Zhang J, Xiang X, Yan YB. Free radial forearm flap and anterolateral thigh flap for reconstruction of hemiglossectomy defects: A comparison of quality of life. *J Craniomaxillofac Surg.* 2018 Dec;46(12):2157-2163. doi: 10.1016/j.jcms.2018.10.006
- Cai YC, Li C, Zeng DF, et al. Comparative Analysis of Radial Forearm Free Flap and Anterolateral Thigh Flap in Tongue Reconstruction after Radical Resection of Tongue Cancer. ORL J Otorhinolaryngol Relat Spec. 2019;81(5-6):252-264. doi: 10.1159/000502151
- Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *PLoS Med.* 2009 Jul 21;6(7):e1000100. doi: 10.1371/journal. pmed.1000100
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021 Mar 29;372:n71. doi: 10.1136/bmj.n71
- Ouzzani, M., Hammady, H., Fedorowicz, Z., Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. *Systematic reviews*, 2016. 5(1), 1-10.
- 34. Amin MB, Greene FL, Edge SB, et al. The Eighth

- Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. *CA Cancer J Clin.* 2017 Mar;67(2):93-99. doi: 10.3322/caac.21388
- Lu M, Sun G, Hu Q, Tang E, Wang Y. Functional assessment: Free thin anterolateral thigh flap versus free radial forearm reconstruction for hemiglossectomy defects. *Med Oral Patol Oral Cir Bucal*. 2015 Nov 1;20(6):e757-62. doi: 10.4317/ medoral.20727
- Tarsitano A, Vietti MV, Cipriani R, Marchetti C. Functional results of microvascular reconstruction after hemiglossectomy: free anterolateral thigh flap versus free forearm flap. *Acta Otorhinolaryngol Ital*. 2013 Dec;33(6):374-9.
- Hsiao HT, Leu YS, Liu CJ, Tung KY, Lin CC. Radial forearm versus anterolateral thigh flap reconstruction after hemiglossectomy: functional assessment of swallowing and speech. *J Reconstr Microsurg.* 2008 Feb;24(2):85-8. doi: 10.1055/s-2008-1076097
- Ranganath K, Jalisi SM, Naples JG, Gomez ED. Comparing outcomes of radial forearm free flaps and anterolateral thigh free flaps in oral cavity reconstruction: A systematic review and metaanalysis. *Oral Oncol.* 2022 Dec;135:106214. doi: 10.1016/j.oraloncology.2022.106214
- Teichgraeber J, Bowman J, Goepfert H. Functional analysis of treatment of oral cavity cancer. *Arch* Otolaryngol Head Neck Surg. 1986 Sep;112(9):959-65. doi: 10.1001/archotol.1986.03780090055010